Defective activation of T suppressor cell function in nonobese diabetic mice. Potential relation to cytokine deficiencies.

نویسندگان

  • D V Serreze
  • E H Leiter
چکیده

Nonobese diabetic (NOD) is an inbred mouse strain susceptible to development of T cell-mediated autoimmune diabetes. The strain is characterized by high percentages of T lymphocytes in lymphoid organs. The syngeneic mixed lymphocyte reaction (SMLR), a T cell response to self MHC class II Ag, is reportedly involved in the generation of a number of immunoregulatory cells, including suppressor inducers. A severely depressed SMLR characteristic of certain other autoimmune strains was found in NOD but not in nonautoimmune SWR/Bm mice. Moreover, IL-2 produced by NOD T cells at day 6 in an SMLR was at least one hundredfold reduced compared with SWR, and NOD T cells harvested from an SMLR at day 6 were functionally defective when tested for ability to induce suppression of an allogeneic MLR. However, functionally competent suppressor T cells were generated in NOD splenic leukocyte cultures in response to Con A, and IL-2 release from these was equivalent to that released by Con A-stimulated SWR splenocytes. A deficiency in cytokine release was not limited to IL-2, because peritoneal exudate cells from NOD exhibited a greatly diminished sensitivity to LPS-stimulated IL-1 release in comparison to SWR mice. IL-2 supplementation both in vitro and in vivo restored the ability of NOD T cells to respond in a SMLR, with production of cells capable of inducing suppression. Like SMLR-activated T cells from untreated SWR controls, SMLR blasts from IL-2-treated NOD mice were enriched for the L3T4 phenotype. IL-1 supplementation in vitro resulted in partial restoration of T suppressor activation in a SMLR. The depressed SMLR exhibited by NOD mice was apparently a stimulator cell dysfunction, because NOD stimulator cells failed to activate T cells from (SWR x NOD)F1 mice, whereas stimulators from SWR or F1 mice were capable of doing so. Collectively, these results suggest a defect in suppressor cell activation rather than an absence of this immunoregulatory cell population.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice.

The immunoregulatory function of NKT cells is crucial for prevention of autoimmunity. The prototypical NKT cell Ag alpha-galactosylceramide is not present in mammalian cells, and little is known about the mechanism responsible for NKT cell recruitment and activation. Up-regulation of CD1d, the NKT cell restriction molecule, expressed on mononuclear cells infiltrating the target organ, could rep...

متن کامل

A Defect in Tryptophan Catabolism Impairs Tolerance in Nonobese Diabetic Mice

The predisposition of nonobese diabetic (NOD) mice to develop autoimmunity reflects deficiencies in both peripheral and central tolerance. Several defects have been described in these mice, among which aberrant antigen-presenting cell function and peroxynitrite formation. Prediabetes and diabetes in NOD mice have been targeted with different outcomes by a variety of immunotherapies, including i...

متن کامل

Impaired SLAM-SLAM homotypic interaction between invariant NKT cells and dendritic cells affects differentiation of IL-4/IL-10-secreting NKT2 cells in nonobese diabetic mice.

The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the s...

متن کامل

Islet β-Cell Endoplasmic Reticulum Stress Precedes the Onset of Type 1 Diabetes in the Nonobese Diabetic Mouse Model

Type 1 diabetes is preceded by islet β-cell dysfunction, but the mechanisms leading to β-cell dysfunction have not been rigorously studied. Because immune cell infiltration occurs prior to overt diabetes, we hypothesized that activation of inflammatory cascades and appearance of endoplasmic reticulum (ER) stress in β-cells contributes to insulin secretory defects. Prediabetic nonobese diabetic ...

متن کامل

The Role of Macrophages in T Cell–mediated Autoimmune Diabetes in Nonobese Diabetic Mice

We have shown previously that the inactivation of macrophages in nonobese diabetic (NOD) mice results in the prevention of diabetes; however, the mechanisms involved remain unknown. In this study, we found that T cells in a macrophage-depleted environment lost their ability to differentiate into beta cell-cytotoxic T cells, resulting in the prevention of autoimmune diabetes, but these T cells r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 140 11  شماره 

صفحات  -

تاریخ انتشار 1988